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Abstract

In an earlier Brief Note, in 1999, a simplified analysis was presented to show why aspirating pipes—a problem related

to Feynman’s aspirating rotary-sprinkler quandary—do not flutter at infinitesimally small flow-rates. Recently,

however, it has become clear that this earlier work is at best incomplete. A reevaluation of the problem is undertaken

here, with some fresh insights as to if and why flutter does not occur at low flow velocities. In the process, the equation

of motion is derived by an appropriate statement of Hamilton’s principle, as well as by Newtonian methods, and the

work done by the fluid is computed.

r 2004 Published by Elsevier Ltd.
1. Introduction

A brief historical perspective would be a useful preamble to the presentation of some new ideas on this problem.

Perhaps the earliest work on this topic was by Paı̈doussis and Luu (1985), who found that, in the absence of

dissipation, an aspirating cantilevered pipe loses stability at infinitesimally low flow velocities, and then regains stability

at higher flow. That is, the predicted linear dynamical behaviour is the mirror image of that of a cantilevered pipe

discharging fluid, which is stable at low flows and then loses stability by flutter at a higher flow—in the absence of

dissipation, at the very same flow velocity at which the aspirating pipe regains stability. This result is obtained

essentially by changing the flow velocity U in the equation of motion of the discharging cantilever (Gregory and

Paı̈doussis, 1966a; Paı̈doussis, 1970, 1998) to �U ; thus effectively presuming a purely tangential ingestion of the fluid at
the free end (a reverse-jet flow).

Subsequently, as a result of discussions with Dr D.J. Maull at Cambridge University in 1995, this problem was linked

to that of Feynman’s quandary on the sense of rotation of an aspirating rotary lawn-sprinkler: would it be forward

(as for the normal, discharging sprinkler) or backward (Gleick, 1992)? Thence, the problem was reevaluated and a new

equation of motion was proposed, on the basis of which it was concluded (Paı̈doussis, 1998, 1999) that ‘‘aspirating pipes

do not flutter at infinitesimally small flow’’. The gist of the mechanism underlying this result is that the unsteady

centrifugal forces over arbitrarily bent segments of the pipe are cancelled out by equal and opposite unsteady forces due

to depressurization, associated with the negative mean pressure generated by the ingestion of fluid at the free end and

applying all along the pipe. Physically, this implies a spherical sink flow at the pipe inlet, of effectively zero average flow
e front matter r 2004 Published by Elsevier Ltd.
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velocity in any given direction, changing to a flow with velocity �U ; aligned with the pipe, upon entry into the

pipe itself.

An experiment was conducted (Paı̈doussis, 1999), involving two nominally identical vertical, cantilevered, flexible

pipes, submerged in a water tank; at the free end, each pipe was fitted with a 90� elbow. One pipe discharged water at

the free end, while the other aspirated. When the flow was turned on, the discharging pipe bent backwards in the plane

of the elbow as a result of the centrifugal force at the elbow; on the other hand, after a starting transient, the aspirating

pipe remained vertical and undeformed. This observation lent support to the theoretical conclusion regarding stability

of aspirating pipes, at least at low flow-rates.

More recently, however, fresh doubts surfaced [see Kuiper and Metrikine (2005)] to the effect that (i) the

depressurization effect may have been overestimated, and (ii) the system may actually lose stability by the action of

Coriolis forces alone, a possibility unaccountably ignored in the Paı̈doussis (1998, 1999) analysis.

Accordingly, the stability of the system under consideration is here reappraised ab initio, adopting along the way

some ideas originally put forward by Pramila (1992).

Before closing this Introduction, it ought to be recalled that this problem is not wholly academic. One important

application is in ocean mining, e.g. of manganese nodules, by essentially vacuuming the sea floor from a surface vessel,

thus involving a long, flexible, aspirating pipe [see, e.g., Chung et al. (1980); Deepak et al. (2001); Xia et al. (2004)].
2. Background theory

2.1. General considerations

Consider the simplest form of the linearized equation of motion of an undamped horizontal cantilevered pipe

conveying fluid,

EI
@4w

@x4
þ MU2 @

2w

@x2
þ 2MU

@2w

@x@t
þ ðM þ mÞ

@2w

@t2
¼ 0; (1)

where x and t are the axial coordinate and time, respectively, EI is the flexural rigidity of the pipe, M the mass of fluid

per unit length, flowing from the fixed end ðx ¼ 0Þ to the free one ðx ¼ LÞ with a steady flow velocity U, m the mass of

the pipe per unit length, and w the lateral deflection of the pipe [see, e.g., Paı̈doussis (1998)]. Thus, for the present, we

consider the pipe discharging rather than aspirating fluid. The first term in Eq. (1) is the flexural restoring force. Upon

recalling that @2w=@x2 � 1=R; where R is the local radius of curvature, it is obvious that the second term is associated

with centrifugal forces as the fluid flows in curved portions of the pipe. Similarly, the third term is recognized as being

associated with the Coriolis acceleration, and the last term represents inertial effects.

The dynamics of the system for the discharging cantilever, i.e. for U40; is well understood. For sufficiently small U,

the dynamics is dominated by the Coriolis force 2MUð@2w=@x@tÞ; and the system is subjected to flow-induced damping.

For sufficiently large U, however, the centrifugal force, MU2ð@2w=@x2Þ; which may also be viewed as a compressive
follower force, overcomes the Coriolis damping effect, and the system loses stability by single-mode flutter via a

Hopf bifurcation.

Considering periodic motions of period T, it is shown (Benjamin, 1961a; Paı̈doussis, 1970, 1998) that the work done

by the fluid on the pipe is equal to

DW ¼ �MU

Z T

0

@w

@t

� �2

L

þ U
@w

@t

� �
L

@w

@x

� �
L

" #
dta0; (2)

where ð@w=@tÞL and ð@w=@xÞL are, respectively, the lateral velocity and slope of the free end. For small U40; the first
term dominates, and the work done is negative; hence, the pipe loses energy to the flowing fluid, and free pipe motions

are damped. For high enough U, however, the second term dominates; if the slope and velocity of the free end have

opposite signs over a period, ½ð@w=@xÞLð@w=@tÞL	j
T
0o0; then the work done may be positive, and energy may then flow

from the fluid (a source of unbounded energy) to the pipe, resulting in amplified oscillations. The aforementioned

opposite-sign characteristic of the free-end slope and velocity corresponds to the ‘‘dragging, lagging’’ form of flutter,

observed in experiments and commented upon by Bourrières (1939), Benjamin (1961b) and Gregory and Paı̈doussis

(1966b).

Consider next the situation with Uo0; i.e. the aspirating system, presuming that Eq. (1) still holds true, with �U

instead of U. Exactly the opposite conclusions are then reached by consideration of Eq. (2): (i) in the course of free

motions, the pipe absorbs energy from the fluid for sufficiently small jU j and is therefore subject to flutter; (ii) for higher



ARTICLE IN PRESS
M.P. Paı̈doussis et al. / Journal of Fluids and Structures 20 (2005) 147–156 149
jU j; the pipe loses energy to the fluid, and hence it is stabilized and its motions are damped. Consequently, the startling
conclusion is reached that the system is unstable for infinitesimally small jU j—or, if dissipation is taken into account,

for quite small jU j: This is precisely what was obtained via a full-fledged linear analysis of the system by Paı̈doussis and

Luu (1985).

If these findings were true, there would be serious repercussions on the feasibility of ocean mining (Paı̈doussis, 1999).

Hence, experimental verification would be highly desirable.

Several attempts to verify experimentally these findings failed: the pipe remained inert as the flow velocity was

increased, up to the point where it collapsed as a shell in the second circumferential mode (i.e., it became flattened),

close to the point of clamping (upper end of the vertically mounted, totally immersed pipe). This is the point of maximal

differential pressure, due to viscous pressure drop, between the lower internal pressure and the higher pressure in the

external stagnant fluid. Similar was the experience and the experimental set-up itself devised by Feynman to test the

rotation of an aspirating rotary sprinkler.1

Clearly, therefore, the foregoing constitutes a paradox: theory predicts that the aspirating pipe loses stability at

infinitesimal (or quite small) flow velocity, but experiments show the system to remain stable, at least to the maximum

attainable flow prior to pipe collapse. Reversing the flow direction in the experiments does not invert the stability

behaviour of the pipe. Similarly, in Feynman’s sprinkler, reversing the flow direction did not reverse (nor replicate) the

direction of rotation.

2.2. First revision of the theory, and state of knowledge prior to 2004

In the course of documenting this work (Paı̈doussis, 1998) after the aforementioned discussions with David Maull, a

fresh attempt was made to resolve the paradox.

It was first realized that the pressure at the inlet of the pipe is lower than that of the ambient surrounding fluid.

Considering the force on the fluid at the pipe inlet to be equal to the change in the momentum before and after entry,

one may write

Fx ¼ MUðDUÞx � MUðUxi � UxoÞ; (3)

where MU is the mass flow-rate and ðDUÞx is the change in flow velocity as the fluid enters the pipe; Uxo is the average

flow velocity in the axial direction just outside the pipe, and Uxi is the value inside the pipe. Considering a sink flow

(Fig. 1) at inlet, Uxo ’ 0; and, of course, Uxi ¼ �U :2 Thus, Fx ¼ �MU2: Hence, the force of the fluid on the pipe,
Fn

x ¼ �Fx; is given by

Fn

x ¼ MU2: (4)

Without loss of generality, from here on gravity and buoyancy forces on the generally vertical pipe will be ignored for

simplicity, as if the pipe were horizontal. An axial force balance at the free end of the pipe gives Fn
x ¼ ðT � pAÞL; and

hence

ðT � pAÞL � ðTL � pLAÞ ¼ MU2; (5)

where T is the tension and p the internal pressure, measured above the external ambient pressure, both at x ¼ L [see

Paı̈doussis, (1998, Eq. 3.98)]; the term T � pA is often called the effective tension. Here, since TL ¼ 0 (but see also

Appendix A for TLa0), this is viewed as a pressurization effect; thus, pLA ¼ �MU2; indicating a depressurization at

the inlet. Moreover, since an axial force balance along the pipe gives

@

@x
ðT � pAÞ ¼ 0; (6)

this depressurization applies all along the pipe. Eq. (6) means that frictional forces on the pipe, hence the x-varying

tension, and frictional pressure loss cancel out (Gregory and Paı̈doussis, 1966a, b; Paı̈doussis, 1998). Consequently,

the only tension which can exist is an externally applied tension, TL ¼ T ; and an externally induced

pressurization, pL ¼ p; both applicable for 0pxpL: In their presence, for the aspirating pipe (flow velocity �U),

Eq. (1) is modified to

EI
@4w

@x4
� ðT � pAÞ

@2w

@x2
þ MU2 @

2w

@x2
� 2MU

@2w

@x@t
þ ðM þ m þ MaÞ

@2w

@t2
¼ 0; (7)
1Similar also were the ensuing accidents while attempting to increase the flow excessively; see Paı̈doussis (1998, 1999).
2See also Appendix A.
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Fig. 1. Diagram showing the sink-like flow at the pipe outlet of an aspirating pipe. (a) Side-view and (b) cross-sectional view of the

inlet flow.
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(Paı̈doussis, 1998, Eq. (3.98)), in which the added mass per unit length Ma of the ambient fluid has been included.

Hence, since TL � pLA � T � pA; in view of Eq. (5) all centrifugal force terms (i.e., terms involving @2w=@x2) in Eq. (7)

cancel out!

It was because of this fact, obtained a little differently (see Appendix A), and by analogy to the discharging cantilever,

that it was concluded in Paı̈doussis (1998, 1999) that the system is stable at infinitesimal flow velocities. As we shall see,

this is at best incomplete.

Pramila (1992) also conducted some work on the problem, which was in fact more perceptive and complete

(see Section 3.1), concluding that ‘‘cantilevered pipes aspirating fluid may be stable’’.

2.3. Lacunae and doubts

Recently, doubts were raised about the generality and correctness of some aspects of the work outlined in Section 2.2.

Briefly, these may be summarized as follows:
(i)
 even if all centrifugal terms cancel out, the Coriolis term, which for a discharging pipe damps motions for small U,

in the case of an aspirating pipe generates negative damping for flow velocities �U ; thus causing instability,
essentially as originally found by Paı̈doussis and Luu (1985);
(ii)
 the result in Eq. (5) is doubtful since it contravenes Bernoulli’s equation for the flow from a stagnant state far away

to the pipe inlet, as will be detailed below; hence the centrifugal forces may not cancel out!
According to Bernoulli’s equation, presuming a flow not quite like a pure sink flow at the inlet, we can write

p1 þ
1

2
rU2

1 ¼ po þ
1

2
rU2

o;

in which the subscript 1 means ‘‘far away’’, and hence U1 ¼ 0; the subscript o means ‘‘just facing the pipe’’ and,

according to Kuiper and Metrikine (2005) also within the inlet. Hence, the depressurization thus obtained in
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pL ¼ po � p1 ¼ � 1
2
rU2

o � � 1
2
rU2; therefore, writing rA ¼ M; this gives

pA ¼ �
1

2
MU2; (8)

i.e., only half as large as what was given by Paı̈doussis (1998, 1999); presuming T ¼ 0; then �ðT � pAÞ ¼ � 1
2

MU2:
Thus, Eq. (7) becomes

EI
@4w

@x4
þ
1

2
MU2 @

2w

@x2
� 2MU

@2w

@x@t
þ ðM þ m þ MaÞ

@2w

@t2
¼ 0: (9)

On the basis of this equation, the work done by the fluid on the pipe in the course of a putative cycle of oscillation of

period T is found to be

DW ¼ MU

Z T

0

@w

@t

� �2

�
1

2
U

@w

@x

@w

@t

" #
L

dt ¼ 0:

Therefore, flutter is again predicted at infinitesimal flows, à la Paı̈doussis and Luu (1985), followed by restabilization

at somewhat higher U than originally predicted (because of the 1
2
factor).

Items (i) and (ii) are discussed in detail in a critique by Kuiper and Metrikine (2005). The authors believe that item (i)

is absolutely correct and item (ii) has considerable merit.3 Therefore, a reappraisal of the dynamics of the system has

been initiated, as described next.
3. Reappraisal of the dynamics of aspirating pipes

3.1. The basic model

Fig. 2(a) shows the end of the pipe inclined at an angle w � tan�1ð@w=@xÞL ’ w0
L; where ð Þ

0
¼ @ð Þ=@x: In addition

to the ðx; zÞ-coordinate system, we shall also use the ðx; zÞ system. We postulate a small mean flow velocity �v facing the

inlet, in contrast to the work in Section 2.2 where v ¼ 0; we further postulate that, for small motions, �v remains in the

mean direction of the pipe end, i.e. tangential to the undeflected pipe (Fig. 2(c)). Hence, the forces exerted on the fluid at

the inlet, equal to the change in momentum, MUðDUÞ; are

Fx ¼ MU ½�U cos w� ð�vÞ	 ¼ �MUðU � vÞ; (10a)

Fz ¼ MU ½ð _wL � U sin wÞ � 0	 ¼ MUð _wL � Uw0
LÞ; (10b)

correct to OðeÞ; where w � OðeÞ: In Fz; it is recognized that the fluid in the pipe has a velocity _wL in the z-direction, equal

to the pipe-end velocity, as well as the tangential flow velocity �U ; whereas, outside the pipe, the velocity in the z-

direction is null.

In the foregoing, Fz had been wholly ignored; however, its existence and form were proposed some time ago by

Pramila (1992), along with Fx ¼ �MU2—but, unfortunately, this important work remained in relative obscurity [see

Paı̈doussis, (2003, Appendix O)].
Consequently, the forces of the fluid on the pipe, denoted by an asterisk, are

Fn

x ¼ MU2ð1� aÞ; Fn

z ¼ �MUð _wL � Uw0
LÞ; (11)

where a ¼ v=U : Clearly, according to Section 2.2, a ¼ 0; according to Section 2.3, a ¼ 1
2
; finally, if the flow at inlet is

equal to �U ; as in Section 2.1, then, a ¼ 1: We also obtain (Fig. 2(b)), correct to OðeÞ:

Fn

x ’ Fn

x; Fn

z ¼ Fn

z cos w� Fn

x sin w ¼ �MUð _wL � aUw0
LÞ: (12)

The equation of motion continues to be Eq. (7), but we now include a viscoelastic damping in the pipe material and

linearized viscous damping due to the surrounding fluid; thus,

EI 1þ an
@

@t

� �
@4w

@x4
þ ½MU2 � ðT � pAÞ	

@2w

@x2
� 2MU

@2w

@x@t
þ c

@w

@t
þ ðM þ m þ MaÞ

@2w

@t2
¼ 0: (13a)
3In fact, Kuiper and Metrikine (2005) were sufficiently ambivalent on this point as to conduct calculations in their analysis with

a ¼ 0; 1
2
and 1; a is defined in Eq. (11).
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Fig. 2. (a) The free-end of the pipe and definition of the coordinate systems used and the angle w; (b) definition of the forces exerted by
the fluid on the pipe. (c) The inlet flow assumed in Section 3.1, with v always in the direction shown. (d) The inlet flow assumed in

Section 3.2, with v tangential to the free end of the pipe.
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At the free end ðx ¼ LÞ; the bending moment is zero, and the shear force is related to Fn
z ; i.e.,

EI
@3w

@x3
� MU

@w

@t
� aU

@w

@x

� �
¼ 0: (13b)

This latter may be inserted in the equation of motion by means of a Dirac delta function [see, e.g., Paı̈doussis, (1998,

Section 2.1.3)], and since T � pA ¼ Fn
x as for Eq. (5), with the aid of Eqs. (11) and (12), we have

EI 1þ an
@

@t

� �
@4w

@x4
þ aMU2 @

2w

@x2
� 2MU

@2w

@x@t
þ c

@w

@t
þ ðM þ m þ MaÞ

@2w

@t2
þ MU

@w

@t
� aU

@w

@x

� �
dðx � LÞ ¼ 0:

(14)

The same equation has been obtained via Hamilton’s principle; this is not given here for brevity, but will be in a

forthcoming full-length paper.

In the absence of dissipation, it can easily be shown that the work done on the pipe by the fluid over a cycle of

oscillation is DW ¼ 0 for all values of U, irrespective of what the value of a is; even if a ¼ 1: Hence, according to this
model, with damping the system is unconditionally stable.

In addition to energy transfer considerations, stability was also assessed from the eigenfrequencies of the system.

These were computed via a two-mode Galerkin solution of the dimensionless form of Eq. (14) obtained by using

Z ¼
w

L
; x ¼

x

L
; t ¼

EI

M þ m þ Ma

� �1=2
t

L2
; b ¼

M

M þ m þ Ma

;

s ¼
cL2

½EIðM þ m þ MaÞ	
1=2

; u ¼
M

EI

� �1=2

UL (15)

for Zðx; tÞ / expðiotÞ; o being the dimensionless, generally complex frequency. Hence, the system is stable for

ImðoÞ40; and unstable for ImðoÞo0: The results in Table 1(a) confirm the conclusions reached in the previous

paragraph.

For the system which is neutrally stable at small u, a divergence occurs at relatively high flow ðu ’ 2:3Þ; the
occurrence of divergence is quite reasonable, since the system is subjected to an end load which is not a purely tangential

follower load.

3.2. Variants of the basic model

Several variants of this model have been devised. They were mainly aimed at generalizing the assumption that fluid

facing the inlet is as in Fig. 2(c). Here just one of these variants is presented. A fuller discussion is reserved for the

aforementioned full-length paper, since work on this topic is continuing.
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Table 1

Eigenfrequencies o [in (a)] and ImðoÞ [in (b) and (c)] computed by a two-mode Galerkin solution

(a) Values of o: Model of Section 3.1 ðb ¼ 0:15Þ
u ¼ 1:0; an ¼ s ¼ 0 u ¼ 1:0; an ¼ 10�3; s ¼ 0:05

a ¼ 0 a ¼ 0:5 a ¼ 0 a ¼ 0:5

3:499þ 0i 3:148þ 0i 3:499þ 0:031i 3:148þ 0:031i
22:14þ 0i 21:77þ 0i 22:14þ 0:268i 21:77þ 0:268i

(b) Values of ImðoÞ: Model of Section 3.2 ðb ¼ 0:15; an ¼ s ¼ 0; u ¼ 1Þ

a ¼ 0:4 a ¼ 0:4 a ¼ 0:5 a ¼ 0:5 a ¼ 0:5
g ¼ 0:8 g ¼ 0:6 g ¼ 0:8 g ¼ 1:0 g ¼ 1:2

0.002 �0.001 �0.003 0.0 0.003

�0.002 0.001 0.003 0.0 �0.003

(c) Values of ImðoÞ: Model of Section 3.2 ðb ¼ 0:15; an ¼ 10�3; s ¼ 0:05; u ¼ 1Þ

a ¼ 0:4 a ¼ 0:4 a ¼ 0:5 a ¼ 0:5 a ¼ 0:5
g ¼ 0:8 g ¼ 0:6 g ¼ 0:8 g ¼ 1:0 g ¼ 1:2

0.033 0.030 0.028 0.031 0.034

0.266 0.269 0.271 0.268 0.265

M.P. Paı̈doussis et al. / Journal of Fluids and Structures 20 (2005) 147–156 153
It is presumed that pA ¼ �ð1� aÞMU2; as in Eq. (10a) with a ¼ v=U : If a ¼ 1
2
; we obtain pA ¼ � 1

2
MU2; which in

fact agrees with Idel’chik (1986): the pressure loss coefficient for a square-cut inlet is 1, i.e. a loss of one velocity head,
1
2
rU2: This is the steady pressure loss. However, there will be an additional unsteady pressure loss if the pipe undergoes

oscillatory motion. Another way of looking at this is that pA ¼ � 1
2

MU2 corresponds to the result obtained via

Bernoulli’s equation for steady flow. However, if flutter is conjectured to arise, the unsteady form of the Bernoulli

equation ought to have been used instead; the oscillatory motion would result in a further depression of the pressure at

the intake, as more fluid kinetic energy would need to be created. Thus, taking pA ¼ � 1
2

MU2 would be very

conservative; instead, we retain pA ¼ �ð1� aÞMU2; with ao 1
2
; i.e. 1� a4 1

2
:

Furthermore, in the foregoing we had assumed that TL ¼ 0; again a conservative assumption. Taking now TL ¼

gð1� aÞMU2; as developed in Appendix A, we can write

ðT � pAÞL ¼ T � pA ¼ ð1� aÞð1þ gÞMU2; (16)

the same as Eq. (A.6).

In this variant of the theory, we also assume that the average velocity vector of the fluid entering the pipe inlet is as in

Fig. 2(d); hence, Fz ¼ MU ½ð _wL � Uw0
LÞ � ð�vw0

LÞ	: Therefore, with a ¼ v=U ; we have

Fn

z ¼ �MU ½ _wL � ð1� aÞUw0
L	; (17a)

in which, again, ao 1
2
in view of the foregoing. Since Fn

x ¼ �pA ¼ ð1� aÞMU2; we have

Fn

z ¼ �MU _wL: (17b)

Hence, instead of Eq. (14) we have

EI 1þ an
@

@t

� �
@4w

@x4
þ ½1� ð1� aÞð1þ gÞ	MU2 @

2w

@x2
� 2MU

@2w

@x@t
þ c

@w

@t
þ ðM þ m þ MaÞ

@2w

@t2

þ MU _wdðx � LÞ ¼ 0: ð18Þ

Calculating the work done over a period of oscillation, in the absence of dissipation, we obtain

DW ¼ �½1� ð1� aÞð1þ gÞ	MU2

Z T

0

@w

@x

@w

@t

� �����
L

dt: (19)



ARTICLE IN PRESS
M.P. Paı̈doussis et al. / Journal of Fluids and Structures 20 (2005) 147–156154
It is recalled that, in view of the foregoing and Appendix A, 0:7ogo1:4; while 1� aX0:5: It is noted that, if one simply
takes g � 1 and a � 0:5; DW is close to zero.

This dynamical behaviour is also illustrated in Table 1(b,c) for 0:6ogo1:2 and 0:4oao0:5; with and without

dissipation. As ReðoÞ does not change much with u, only the ImðoÞ are given.
In the absence of dissipation, it is seen in Table 1(b) that the system is unstable in its second mode if the quantity in

square brackets in Eq. (19), �gþ að1þ gÞ40; i.e. in the first and last columns of the table. This makes sense, since
½ð@w=@xÞð@w=@tÞ	L is expected to be negative, at least for low U, and hence DW40: For �gþ að1þ gÞo0; however, the
system is unstable in its first mode (second and third columns); again, this makes sense since it corresponds to

½ð@w=@xÞð@w=@tÞ	L40; appropriate for the first-mode oscillation, leading to DW40: Thus, it is interesting that the
system ‘‘adjusts itself’’ to extract energy from the fluid one way or another. For �gþ að1þ gÞ ¼ 0 the system is of course

neutrally stable.

Nevertheless, it is seen in Table 1(c) that, with an ¼ 10�3 and s ¼ 0:05;ImðoÞ40 in all cases, and the system is stable

for u ¼ 1:
Eventually, however, for high enough flow, unless �gþ að1þ gÞ ¼ 0; the system loses stability by flutter. The critical

flow velocities, uc; are: (i) uc ¼ 2:2 in the first mode for a ¼ 0:5; g ¼ 0:8; (ii) uc ¼ 7:0 in the second mode

for a ¼ 0:4; g ¼ 0:8; and (iii) uc ¼ 6:1 in the second mode for a ¼ 0:5; g ¼ 1:2:4

3.3. Discussion

It is important to stress that, whether the flow is as in Fig. 1(c) or Fig. 1(d), the effect of the Coriolis forces in the

equation of motion is cancelled by the term �MUð@w=@tÞ in the boundary condition, insofar as the calculation of DW is

concerned. Therefore, flutter, in the cases where it does occur, is not related to the Coriolis forces but to nonvanishing

fractions of the centrifugal force MU2ð@2w=@x2Þ; remaining after depressurization and tensioning effects have been
accounted for.

It is clear from the foregoing that the dynamics of the system depends intimately on the precise assumptions

made regarding the flow-field in the vicinity of the pipe inlet. To advance in this direction, a numerical (CFD)

study using ANSYS has been initiated, which should help decide whether the model of Section 3.1 or 3.2, or

perhaps another, is closer to the truth, as well as to suggest what the correct values for the parameters in these models

should be.
4. Conclusion

In this short paper, the stability of aspirating pipes is reviewed, from (i) the initial study suggesting flutter at

infinitesimal flow (Section 2.1), to (ii) the supposed resolution of the problem negating the existence of such flutter

(Section 2.2), to (iii) the realization that this supposed resolution is incomplete (Section 2.3) [see Kuiper and Metrikine’s

(2005) work], and to (iv) the reappraisal of the question (Section 3) with the adaptation of some ideas by Pramila (1992),

further developed here.

If one assumes that the flow ingested remains substantially tangential to the mean position of the pipe

end in the course of a putative cycle of small oscillation (Section 3.1), it is shown that the system is unconditionally

stable.

If the mean velocity vector rotates so as to always be tangential to the pipe inlet during oscillation (Section 3.2),

stability is shown to depend on the parameter grouping �gþ að1þ gÞ; where g � Oð1Þ and a � Oð1
2
Þ: Thus, if g ¼ 1 and

a ¼ 1
2
; the system is again unconditionally stable, but otherwise can be unstable if dissipation is not taken into account.

With a reasonable amount of dissipation, however, the system is stable in this case also in the range of flow velocities of

practical interest. However, since the problem is of fundamental, as well as practical interest, a numerical study has been

initiated which will aid in refining and further developing the models presented here.

In terms of the concerns raised with regard to the model of Paı̈doussis (1999) and expressed as (i) and (ii) in Section

2.3, it has been shown that (i) the Coriolis forces actually do not do any net work if the forces at the mouth of the pipe

are properly accounted for, and (ii) with or without the use of Bernoulli’s equation, the centrifugal forces either totally

or nearly vanish; however, it is this last aspect that needs be verified by CFD calculations. Indeed, perhaps this

Communication is not quite the final word on this deceptively simple problem.
4The calculations for (ii) and (iii) were conducted with eight comparison functions in the Galerkin scheme of solution, because of the

high values of u involved.
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Appendix A. Alternative derivations and elaboration of Eqs. (4) and (5)

A.1. Alternative derivations

The arguments leading from Eq. (3) to Eq. (4) effectively say that a relatively large volume of fluid of very small

average flow velocity, and with no coherent vectorial sense, changes in a short distance to a smaller volume with

coherent mean flow velocity �U aligned with the pipe inlet.

In a sense, this is the converse treatment to that for a short nozzle at the end of a discharging cantilever (Gregory and

Paı̈doussis, 1966a; Paı̈doussis, 1998), which gives ðT � pAÞL ¼ �MUðUj � UÞ ¼ �MU2ðaj � 1Þ; with aj ¼ A=Aj41;
where subscript j for ‘‘jet’’ denotes quantities at the nozzle exit. It is of interest that Bishop and Fawzy (1976) find the

same result for ðT � pAÞL; even though they determine pLA via Bernoulli’s equation.

In the case of an aspirating pipe, the nozzle is replaced by a funnel leading to the pipe inlet, such that ðT � pAÞL ¼

�MU ½�U � ð�U0Þ	; U0 being the average velocity outside in the tangential direction. Thus, if U0=U51; ðT �

pAÞL ¼ MU2:
In Paı̈doussis (1998, 1999) this was obtained by considering a variant of the axial force balance equation, @ðT �

pAÞ=@x ¼ Mð@U=@tÞ; namely

@

@x
½T � pA � ðMUÞU 	 ¼ 0: (A.1)

Considering the funnel idea and integrating from a point outside where U ’ 0 to x ¼ L; one again obtains ðT � pAÞL ¼

MU2:
The weak point in the foregoing is the ‘‘funnel’’. If we abandon it and use instead Bernoulli’s equation, we can write

pL þ
1

2
rU2 ¼ pu; (A.2)

where pu is the pressure upstream, far enough for the velocity there to be zero. Hence, since in all of this treatment we

use pressures relative to the ambient, here equal to pu for a horizontal system, then pLA ¼ � 1
2

MU2 as in Eq. (8). As

discussed in Section 3.2, pLA above is underestimated, because of neglect of unsteady flow effects associated with

putative pipe oscillation. Hence, as in Section 3.2, we take

pLA ¼ �ð1� aÞMU2; (A.3)

where 1� a4 1
2
:

A.2. An expression for ðT � pAÞL

In Section 2.3, we have presumed that TL ¼ 0; and hence ðT � pAÞL ¼ �ð1� aÞMU2: Actually, there will be a
suction on the free-end cross-section of the pipe, so that TL40: Assuming the pressure to be somewhere between pL and

the ambient just outside, conservatively taken to be zero, say taking the pressure to be gpL with pL as in Eq. (A.3),

0ogo1; we have

TL ¼ �gpLðAo � AiÞ ¼ �gpLAi
Ao � Ai

Ai

� �
¼ ð1� aÞgMU2 Ao � Ai

Ai

� �
; (A.4)

where Ai and Ao are, respectively, the inner and outer cross-sectional areas of the pipe. We may also write Eq. (A.4) as

TL ¼ ð1� aÞgMU2 r
rs

1

bi

� 1

� �
� ð1� aÞf gMU2 � ð1� aÞgMU2; (A.5)

where rs is the density of the pipe material, and bi ¼ M=ðM þ mÞ: The reason for introducing the form involving bi is

that in most of the published literature the parameter bi is used (mostly without the subscript i).
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For a fairly thick elastomer pipe conveying water, typical of those used in the experiments (bi ¼ 0:24; ratio of outer/
inner diameter Do=Di ¼ 1:95; rs ¼ 1:11r), we obtain f ¼ 2:85; for a thicker pipe ðbi ¼ 0:15; Do=Di ¼ 2:44Þ; f ¼ 4:95;
while for a thinner one ðbi ¼ 0:52; Do=Di ¼ 1:36Þ; f ¼ 0:84: For an air-conveying elastomer pipe ðbi ’ 10�3Þ;
f ’ 1:0: For a steel pipe conveying water (bi ¼ 0:15; Do=Di ¼ 1:3; rs ¼ 7:8r), f ¼ 0:72: Thus, for relatively thick pipes
f42; while for relatively thin ones f ’ 0:8 is a more representative value. Now, generally, for the thicker pipes g will be
lower (say, g ¼ 0:5) than for the thinner ones where the pressure on the pipe face should be closer to the pressure in the
pipe mouth (hence g ’ 1). Consequently, putting all the foregoing together, we obtain 0:7og � f go1:4 approximately,
or g � Oð1Þ: The point is that TL is not negligible, and ðT � pAÞL ’ MU2 is not too grossly unreasonable, after all!

Hence, we take TL as in Eq. (A.5), and therefore

ðT � pAÞL ¼ ð1� aÞð1þ gÞMU2; (A.6)

where it is understood that a � Oð12Þ but larger than 0.5 and g � Oð1Þ: The fact that ð1� aÞð1þ gÞ � Oð1Þ is important,

because the tensioning-pressurization term associated with Eq. (A.6) in the equation of motion tends to cancel out the

centrifugal force, substantially if not completely.
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